
Proceedings of the IBIMA 2005 Conference. Lisbon, Portugal. 2005.

Towards a Temporal Multilevel Secure Relational Database Model

Ramzi A. Haraty and Natalie Bekai

Lebanese American University

Beirut, Lebanon

Email: rharaty@lau.edu.lb

Abstract

Conventional temporal databases provide little support

for ensuring secrecy of sensitive data. On the other

hand, multilevel secure relational data models assure

that each user gains access to only those data for

which he/she has proper clearance, but there is no

support for recording and querying time varying data.

In this paper, we aim to provide a new relational

database model that supports both recording and

ensuring the secrecy of time varying data.

Keywords: Multilevel secure databases,

polyinstantiation, and temporal databases.

1. Introduction

It is important before starting to talk about temporal

multilevel secure relational data model that we

understand the classical multilevel secure model and

temporal relational database model. In this paper, we

review the basic concepts of both - the multilevel

secure database model and the temporal database

model, their definition, and the essential constraints

that must be satisfied.

Numerous works have been done on temporal and

multilevel secure database models [2, 3, 5, 6, 7, 8].

However, none of them combined both issues under

one model. In this paper, we aim to provide a new

relational database model that supports both recording

and ensuring the secrecy of time varying data.

The remainder of the paper is organized as follows:

section 2 discusses the multilevel secure database

model. Section 3 overviews the temporal database

model. Section 4 presents our combined model and

section 5 concludes the paper.

2. Multilevel Secure Databases

Multilevel secure databases are databases that contain

large amounts of very highly sensitive and confidential

data (e.g., military, governmental, etc.); that is why

access to the data stored in these databases needs to be

authorized. Although, there is no clear agreement on

the definition of a multilevel secure database model,

we try to present in this section the basic concepts of a

multilevel secure relational model. Our aim is to use its

fundamental aspects in building up the model of

temporal multilevel secure databases.

Basic Concepts

One of the main concepts in multilevel secure

databases is the assignment of access privileges to

users of the database so as to be able to manage and

protect confidential and sensitive data. Each user is

given access privileges to access the data he/she is

authorized to access. Confidential data is protected

either by making it inaccessible to unauthorized or by

providing a cover story. To provide a cover story, the

same real-world entity is depicted by more than one

record. Each of these records is assigned a different

classification level. Users with different access

clearances see different versions of the data in the

database. These records have the same primary key at

all the classification levels but with different values for

the non-key attributes at each classification level [1].

This technique is used to protect information stored at

a higher security levels by providing some lower

security levels. Data hidden from low clearance users

will be seen by a user of a higher clearance if this user

has the clearance to see this data.

Access privileges can be assigned to relations, to

individual tuples in a relation, to individual columns, or

to individual data elements of a relation. In this paper

we assume access classes are assigned to individual

data elements of a relation.

Multilevel Relations

The definition of multilevel relation is divided into two

parts:

Part 1 [RELATION SCHEME] A state-invariant

multilevel relation scheme is of the form:

R(A1,C1,A2,C2,…,An,Cn,TC)

Where Ai is a data attribute over domain Di, Ci is a

classification attribute for Ai, and TC is the tuple-class

attribute. The domain of Ci is specified by a set {Li,

…,Hi}, which enumerates the allowed values for

access classes, ranging from the greatest lower bound

(glb) Li to the least upper bound (lub) Hi. The domain

of TC is the set {lub{Li; i=1,…,n},…, lub{Hi: i=

1,…,n}}.

mailto:rharaty@lau.edu.lb

Proceedings of the IBIMA 2005 Conference. Lisbon, Portugal. 2005.

Part 2 [RELATION INSTANCES] A collection of

state-dependent relation instances are of the form

Rc(A1,C1,A2,C2,…,An,Cn,TC)

with one instance present for each class c in the given

lattice. Each instance is a set of distinct tuples of the

form (a1,c1,a2,c2,…,an,cn,tc) where each ai  Di, or ai =

null, c  ci and tc = lub{ci :i =1 …n}. Moreover, if ai is

not null then ci  [Li, Hi], which means that a

classification attribute can not be null. Each instance in

a multilevel relation is supposed to present the version

of reality appropriate for each access class.

To further clarify the multilevel relation definition, let

us take for example the military officers relation

presented in figure 1.1 and figure 1.2. The relation

scheme for the relation military officers is presented

below:

Military Officers (ID, Name, Empl_Date, Rank)

The military classifies its database users into two

clearances categories: U, and S. The users at the U

level will be able to see only the data that they have

been given the clearance, while the S level users will

be able to see the data stored at the U level along with

the data stored at the S level. In figure 1 we see the U-

user version of military officers’ relation, and in figure

2 we see the S-user version of military officers’

relation. The information about the military officer

whose ID no. 101 can not be seen by a U user since it

has been assigned a higher access clearance, therefore

this information can only be seen by a user who has a

security level S or higher. In this example, we see also

that the information about the military officer no. 100

at the U level is different from that at the S level. As

we can see, the true identity and rank of the officer 100

has been masked by a cover story. The U level users

are given a cover identity and rank for the officer 100.

Military_Officersu

Figure 1. The U-User version of the military officers

table.

ID Name Empl_Dat

e

Rank T

C

100

U

Johnson

U

1953 U Major General

U

U

100

U

William

S

1953 U Inspector

General S

S

101

S

Miles

S

1934 S Inspector

General S

S

Military_OfficersS

Figure 2. The S-User version of the military officers

table.

3. TEMPORAL DATABASES

Temporal databases are used in environments where

special support for the storage and querying of

historical and future data is a requirement. A temporal

database is a database that contains not only current

data but also historical data, and even possibly future

data. Conventional databases by contrast contain only

current data.

BASIC CONCEPTS

A standard relation is two-dimensional with attributes

and tuples as dimensions. A temporal relation contains

two additional, orthogonal time dimensions, namely

valid time and transaction time. Valid time denotes the

time period during which a fact is true with respect to

the real world. Transaction time records when facts are

stored in the temporal relation. Valid and transaction

time have precise, crisp definitions. If changes to the

past are important, then valid time support is required.

If it is necessary to rollback to a previous state of the

database, then transaction time support is called for.

TEMPORAL RELATIONS

A temporal relation is of the form:

R(A1,A2…,An|t
b
)

It consists of a number of attribute values associated

with a bitemporal timestamp value t
b
. The bitemporal

timestamp value t
b
 is represented by the ordered pair

(c
t
,c

v
) with c

t
 representing the transaction time and c

v

the valid time.

An example of a temporal relation would be the

military officers’ temporal relation presented in figure

ID Name Empl_Date Rank TC

100
U

Johnson U 1953 U Major General
U

U

Proceedings of the IBIMA 2005 Conference. Lisbon, Portugal. 2005.

3. The valid time interval determines when the

information stored in the tuple was valid. From

“1953/3” till “1985/8” the military officer “Johnson”

was a Major General in the army and his employment

started on the year 1953.

ID Nam

e

Empl.

Date

Rank ValidTime

10

0

John

son

1953 Major

General

[1953/3-

1985/8]

10

1

Mile

s

1983 Lieutenant

General
[1983/7-]

Figure 3. A sample data of the military officers’

temporal relation.

4. TEMPORAL MULTILEVEL SECURE

RELATION

A multilevel secure temporal relation is of the form

R(A1,C1,A2,C2,…,An,Cn,VT,Cvt,TC)

where Ai is a data attribute over domain Di, Ci is a

classification attribute for Ai, VT is the valid time

attribute, Cvt is a classification attribute T, and TC is

the tuple-class attribute. The domain of Ci is specified

by a set {Li, …,Hi}, which enumerates the allowed

values for access classes, ranging from the greatest

lower bound (glb) Li to the least upper bound (lub) Hi.

The domain of TC is the set {lub{Li; i=1,…,n},…,

lub{Hi: i= 1,…,n}}, and the domain of Cvt is the set

{lub{Li; i=1,…,n},…, lub{Hi: i= 1,…,n}.

4.1 UPDATE OPERATIONS

The operations on a relational database can be

categorized into two main categories: retrievals and

updates.

The update operations can be divided into three types

of operations: Insert which is used to insert a new

tuple or tuples in a relation, Delete which is used to

delete tuples, and Modify which is used to change the

values of some attributes.

Changes to temporal databases are viewed as additions

to the information stored in the database. Since in a

temporal database no data is ever deleted, meaning

once data is inserted into the database it will not be

deleted at any other time, but rather a new tuple

reflecting the changes to the data is inserted with a new

timestamp value. The same will apply to temporal

multilevel secure relational databases. So we only need

to worry about insert and modify operations in a

temporal multilevel secure database.

For multilevel secure databases, insert and update

operations are carried in a very much similar way as

they are carried in classical databases except for certain

updates that do not simply involve the overwriting of

data since this would lead to a failure in ensuring the

secrecy of data.

In this section, we show by examples how update

operations take place in temporal multilevel secure

databases. Whenever we need to do an update

operation, we need to ensure not to violate the integrity

constraints specified on the database.

Consider the following example of the multilevel

relation military officers as depicted in Figure 4. The

figure shows a set of sample values for the military

officers’ relation.

ID Name Empl_

Date

Rank T

C

100

U

Johnson

U

1953

U

Major

General U

U

101

S

Miles

S

1934 S Marshal

S

S

Figure 4. A set of sample values for the military

officers’ relation.

Access clearances are assigned to individual data

elements of a relation. Subjects having different

clearances see different versions of the military

officers’ relation. A U-User having a clearance at the

access class U will see a version of the military

officers’ relation that includes only the data that were

assigned an access class U. While an S-User will be

able to see a version of the military officers table that

will include both the data that were assigned an access

class U and an access class S.

In order to be able to record time varying data into our

database we need to extend the military officers’

relation by adding the temporal attribute ValidTime. It

is an interval that we use to determine when the data

inserted into the tuple, was, is or will be valid. The U-

user and the S-User version of the employees table

after adding the temporal attribute ValidTime are

shown in Figure 5 and Figure 6.

Proceedings of the IBIMA 2005 Conference. Lisbon, Portugal. 2005.

ID Na

me

Emp

l_Da

te

Rank ValidTi

me

T

C

100

U

Joh

nso

n

U

1953

U

Major

General

U

[1953/3

-] U

U

Military_Officersu

Figure 5. The U-User version of the military officers’

relation after adding the temporal attribute

ValidTime.

No Name Empl

_Dat

e

Rank ValidTi

me

T

C

10

0

U

Johns

on

U

1953

U

Major

General

U

[1953/3-

] U

U

10

1

S

Miles

S

1934

S

Inspector

General S

[1985/7-

] S

S

Military_OfficersS

Figure 6. The S-User version of the military officers’

relation after adding the temporal attribute

ValidTime.

Let us go back to our main objective of this section,

which is how to handle update operations in a temporal

multilevel secure database!

Let us assume that on April 1981 a U-user wants to

update the rank of the military officer “Johnson” from

“Major General” to “Lieutenant General”. Figure 7

shows the U_User version of the military officers table,

and figure 8 shows the S-User version after this update.

No Name Empl

_Date

Rank ValidTime T

C

10

0

U

Johns

on

U

1953

U

Major

General

U

[1953/3-

1981/4] U

U

10

0

U

Johns

on

U

1953

U

Lieutenant

General U

[1981/4-

] U

U

Military_Officersu

Figure 7. The changes to the U-User version of the

military officers after updating the rank of military

officer “Johnson” by a U-User.

ID Name Empl_

Date

Rank ValidTime T

C

100

U

Johnso

n U

1953

U

General

U

[1953/3-

1981/4] U

U

100

U

Johnso

n U

1953

U

Lieutenant

General U
[1981/4-]

U

U

101

S

Miles

S

1934

S

Inspector

General S
[1985/7-]

S

S

Military_OfficersS

Figure 8. The changes to the S-User version of the

military officers after updating the rank of military

officer “Johnson” by a U-User.

As a result to this update a whole new tuple had to be

inserted. This new tuple is inserted at the U class. The

valid time for the old tuple of the military officer

“Johnson” is updated to reflect the time in history

when the rank of officer “Johnson” was “Major

General”. From the date April 1981, the rank of the

officer “Johnson” changed to “Lieutenant General”.

As we can see from the example, an update performed

by a user with an X clearance on a tuple with an access

privilege X is dealt with the same way we deal with an

update operation in the temporal database model with

the addition that the new inserted tuple will also have

an access privilege X.

Let us consider another example, in which we deal

with the case where a higher level user tries to update a

tuple that has lower level access privilege. Going back

to our military officers’ example, if a new tuple was

inserted by a U-user to the military officers table then it

is possible for any attribute within that tuple to be

updated by an S-User. Assume that on January 1, 1997,

a user with an S clearance gives the two officers

“Johnson” and “Miles” a new higher rank. Since in

temporal database whenever we are updating we do not

actually update the value, but we rather insert a new

tuple with the same values for all the attributes, except

for the attribute that is to be updated and issued a new

timestamp value; this means that the S-user would

have to insert a new tuple. This tuple would be inserted

at the S-level since an S-user is performing the

operation (see figures 9 and 10). But this would create

a problem, because we would have two tuples with the

same apparent key with overlapping time timestamps.

Proceedings of the IBIMA 2005 Conference. Lisbon, Portugal. 2005.

ID Name Empl

_Date

Rank ValidTime T

C

10

0

U

Johnso

n U

1953

U

Major

General

U

[1953/3-

1981/4] U

U

10

0

U

Johnso

n U

1953

U

Lieutenant

General U

[1981/4-

] U

U

Figure 9. Military_Officersu.

ID Name Empl

_Dat

e

Rank ValidTim

e

T

C

10

0

U

Johns

on U

1953

U

Major

General

U

[1953/3-

1981/4]

U

U

10

0

U

Johns

on U

1953

U

Lieutenant

General U

[1981/4-

]

U

U

10

0

S

Johns

on S

1953

S

Inspector

General S

[1997/1-

] S

S

10

1

S

Miles

S

1934

S

Inspector

General S

[1985/7-

1997/1] S

S

10

1

S

Miles

S

1934

S

Marshal

S

[1997/1-

] S

S

Figure 10. Military_OfficersS.

This would result in a temporary inconsistency in the

database that needs to be resolved. The inconsistency

can be resolved as follows: The S-user logs on at the

U-level and insert a new tuple with a nullified rank

value that happens to have the same timestamp of the

tuple inserted at the S-level. Figures 11 and 12 show

what the relation would look like.

ID Name Empl

_Date

Rank ValidTime T

C

10

0

U

Johnso

n U

1953

U

Major

General

U

[1953/3-

1981/4] U

U

10

0

U

Johnso

n U

1953

U

Lieutenant

General U

[1981/4-

1997/1] U

U

10

0

U

Johnso

n U

1953

U

Null

U
[1997/1-]

U

U

Figure 11. Military_Officersu.

Figure 12. Military_OfficersS.

This scheme will not create a downward signaling

channel from one subject to another since the

nullification at the U-level is being done by a U-

subject. Someone might say that there is a downward

signaling channel with a human in the loop. The

human, however, is trusted not to let the channel be

exercised without good cause.

The coexistence of the tuple (100, Johnson, 1954,

Inspector General, [1997/1-]) and the tuple (100,

Johnson, 1954, null,[1997/1-]) in Military OfficersS,

two tuples with the same primary key, is what is

referred to as polyinstantiation [4]. Here, there is no

threat of entity or attribute polyinstantiation, because at

any time the attribute value is updated this means that a

new tuple would need to be inserted with the same

primary key, same time timestamps, but with different

value for the attribute at each level, the value of the

attribute would appear null at the lowest level, if this

attribute was updated by a higher level user.

Another problem that the coexistence of these two

tuples might create is that they both have the same time

timestamps. In temporal databases at any given

instance of time each military officer is supposed to

have only one rank. This problem is referred to as the

contradiction problem [9]. Since the military officer

100 is shown to have a rank of both null and “Inspector

General” from the date January 1997 and up to this

date.

Let us take another example to clarify the problem; we

take a stock database containing the stkwh table

showing the quantity available in a certain warehouse

of a certain product at a specific period in time. The

relation scheme for the relation stkwh is presented

below:

ID Name Empl

_Date

Rank ValidTime T

C

100

U

Johnso

n U

1953

U

Major

General

U

[1953/3-

1981/4] U

U

100

U

Johnso

n U

1953

U

Lieutenant

General U
[1981/4-]

U

U

100

U

Johnso

n U

1953

U

Null

U
[1997/1-]

U

U

100

S

Johnso

n S

1953

S

Inspector

General S
[1997/1-]

S

S

101

S

Miles

S

1934

S

Inspector

General S

[1985/7-

1997/1] S

S

101

S

Miles

S

1934

S

Marshal

S
[1997/1-]

S

S

Proceedings of the IBIMA 2005 Conference. Lisbon, Portugal. 2005.

STKWH(wrh_no, prod_no, qty_avlb)

Figures 13 and 14 show a set of sample values for the

STKWH relation.

Wrh_N

o

Prod_No Qty_Avl

b

ValidTime TC

100 U 1014 U 2000 U [1998/3-1998/4]

U

U

100 U 1014 U 0 U [1998/4-]

U

100 U 1020 U 500 U [2004/1-]

U

U

STKWHu

Figure 13. A set of Sample Values for the STKWH

relation.

Wrh_No Prod_No Qty_Avl

b

ValidTime TC

100 U 1014 U 2000 U [1998/3-1998/4]

U

U

100 U 1014 U 0 U [1998/4-]

U

U

100 U 1020 U Null U [2003/9-]

U

U

100 U 1020 U 500 U [2004/1-]

U

U

100 S 1020 S 1000 S [2003/9-]

S

S

STKWHs

Figure 14. A set of Sample Values for the STKWH

relation.

Let us assume that an S-User wants to know the

quantity of the product 1020 currently available in the

warehouse 100. This is where the contradiction

problem appears - we have two tuples with the same

primary key showing the quantity available in the

warehouse 100 of item 1020. Which one of the two

quantities is the true available quantity 500 or 1000?

We only have this problem for high level users. Our

next step is to try solving this problem.

4.2 INTEGRITY CONSTRAINTS

In this section, we are concerned with identifying the

integrity constraints that must hold on a temporal

multilevel secure database, in order to ensure that all

the tuples in the database are meaningful. Since we are

talking about temporal multilevel secure databases, we

will try to identify the integrity constraints we need to

specify on temporal multilevel secure databases by

combining the integrity constraints specified on both

the temporal and multilevel secure databases.

In multilevel temporal databases, we store different

database states, and users with different clearances see

different versions of these database states. These

different versions must be kept coherent and

consistent, without introducing any downward

signaling channels. All the tuples in the database must

be meaningful, so we should not have redundancy,

circumlocution or contradiction problems. To be able

to meet all of these requirements we need to specify

some constraints on temporal multilevel secure

databases. These constraints must be a combination of

the integrity constraints of temporal databases along

with those of multilevel secure databases.

ENTITY INTEGRITY: Let AK be the apparent key of

R, and let VT be the valid time of R, A temporal

multilevel relation R satisfies entity integrity if and

only if for all instances Rc of R and t  Rc:

1. Ai  AK  [Ai]  null

2. [VTi]  null

3. Ai, Aj  AK  t[Ci] =t[Cj] =t[CVT] (where

CVT is the classification of the valid time)

4. Ai  AK and Ai <> VTi  t[Ci]  t[CAK]

(where CAK is the classification of the

apparent key)

In multilevel secure relational model, we have three

requirements in the entity integrity constraint to specify

that no part of the primary key can have a null.

Extending these requirements to temporal multilevel

secure relational model we obtained the above

mentioned four requirements. The first requirement

ensures that no attribute of a primary key of a base

relation may be null. The second requirement specifies

that the valid time value can never be null. The third

requirement ensures that all the attributes of a primary

key of a base relation must have the same access class,

and not only the valid time access class must also have

the same access class as these attributes. The fourth

requirement says that the access class of all non-key

attributes (the valid time is not included) in a tuple

dominates the access class of the primary key.

NULL INTEGRITY: A multilevel temporal relation R

satisfies null integrity if and only if for each instance

Rc of R both of the following conditions are true:

1. For all t  Rc, t[Ai] = null  t[Ci] = t[CAK];

Proceedings of the IBIMA 2005 Conference. Lisbon, Portugal. 2005.

2. Let us say that tuple t subsumes tuple s if for

every attribute Ai, either

a. t[VTi] overlaps s[VTi] and t[Ai] ≠

s[Ai]

 or

b. t[Ai] = s[Ai] and t[VTi] merges

s[VTi]

The first requirement means that attributes that have

null values have an access class that is equal to the

access class of the primary key. The second

requirement states that Rc does not contain two distinct

tuples with different non-key attributes values and the

valid time of one overlaps the valid time of another, or

two distinct tuples with identical value for all the

attributes and the valid time of one merges the valid

time of another. Having such tuples will lead to a

problem similar to one of the problems we had in

temporal relational model, the redundancy,

circumlocution or contradiction problem. That is why

we need to prevent the existence of such tuples either

by combining the tuples that have a redundancy or

circumlocution problem or by preventing the existence

of tuples that would cause contradiction (note we are

talking about the attributes that would an access class

similar to that of the primary key and therefore similar

to that of the valid time).

INTERINSTANCE INTEGRITY: R satisfies

interinstance integrity if and only if for all c’  c we

have Rc’ = (Rc, c’), where the filter function 

produces the c’ – instance Rc’, from Rc as follows:

1. For every tuple t  Rc such that t[CAK] = c’ ,

there is a tuple t’  Rc’ with t’[AK,CAK] and

for Ai  AK

 t’[Ai,Ci] = 

t[Ai,Ci] if t[Ci]  c’

<null,t[CAK]> otherwise

2. There are no tuples in Rc’ other than those

derived by the above rule.

3. If at any given time the end result contained

two tuples that have the same apparent

primary key value (the non valid time

attributes of the primary key) but differ on the

values of their non-key attributes then their

valid time values i1 and i2 must be such that

i1 overlaps i2 is false.

4. If at any time the end result contained two

distinct tuples that are identical except for

their valid time values i1 and i2, then i1

merges i2 must be false.

In this constraint, the filter function is used to map the

multilevel temporal relation to different instances, one

for each access class, so as to give the user the ability

to see only the historical data for which he/she is

cleared. The resulting obtained instance will be similar

in a way to a temporal database. In addition, we must

ensure in the end result to combine the tuples that

cause redundancy or circumlocution, and not to have

two tuples that lead to a contradiction.

POLYINSTANTIATION INTEGRITY: In temporal

multilevel secure databases, we may have several

tuples with the same primary key but with different

values for the non-key attributes. Not only this, even at

the same access level we will have more than one tuple

with the same primary key but with different valid

times. As previously mentioned in multilevel secure

databases we can not prevent a low user from inserting

a tuple with the same primary key as a previously

inserted high level tuple or we might create some

downward signaling channel that will violate the

secrecy of data. At the same time we can not prevent a

user at the same access level from inserting a tuple

with the same primary key as an old existing tuple at

the same access level but with different valid time. We

can either refuse such an insertion or override existing

data. Refusing to insert this tuple, or overriding

existing data for either any of the two previously

mentioned reasons will cause a downward signaling

channel, the loss of secret information, and the

destruction of historical data. We have no choice but to

keep all the tuples without violating the foundations of

relational databases. That is why we need to declare the

access class, and the valid time to be part of the

primary key. So we need to specify the following key

constraint:

R satisfies the key integrity if and only if for every Rc

we have for all Ai: AK, VT, CAK, CVT, Ci  Ai, this

means that the user specified primary key AK in

conjunction with the valid time, the classification

attributes CAK, the classification attribute CVT, and Ci,

functionally determines the values of Ai attribute.

5. CONCLUSION

In this paper we introduced a new database model - the

multilevel secure temporal relational data model. We

discussed update operations and how they take place in

our model. We also specified the integrity constraints

needed in a temporal multilevel secure database in

order to ensure that all the data inserted in the database

is consistent, meaningful, historical and secure.

Proceedings of the IBIMA 2005 Conference. Lisbon, Portugal. 2005.

REFERENCES

[1] Chen, F., and Sandhu, R. The Multilevel

Relational Data Model. ACM Transactions on

Information and System Security, Vol. 1, No. 1, pp.

93-132, 1998.

[2] Date, C., Darwen, H. and Lorentzos, N.

Temporal Data and the Relational Model. Morgan

Kaufmann. San Francisco, 2003.

[3] Jajodia, S., Sandhu, R., and Blaustein, B.

Solutions to the Polyinstantiation Problem.

Information Security, pp. 460-492, 1994.

[4] Jajodia, S., Sandhu, R., and Blaustein, B.

Towards a Multilevel Secure Relational Data Model.

Information Security, pp. 493-529, 1994.

[5] Ozsoyoglu, G., and Snodgrass R. Temporal and

Real-Time Databases: A Survey. IEEE Transactions on

Knowledge and Data Engineering. Vol. 7, No. 4,

August 1995.

[6] Pissinou, N., and Makki, K. Towards a

Framework for Integrating Multilevel Secure Models

and Temporal Data Models. Proceedings of the Third

International Conference on Information and

Knowledge Management. Gaithersburg, USA, pp. 280-

287. 1994.

[7] Smith, K. and Winslett, M. Entity Modeling in

the MLS Relational Model. Proceedings of the

International Conference on Very Large Databases,

Los Alamitos, USA, pp. 199-210. 1992.

[8] Shasi, K, Applicability of Temporal Data Models

to Query Multilevel Security Databases: A Case Study.

Temporal Databases – Research and Practice. LNCS

1399, pp. 238-256, 1998.

[9] Tansel, A., Clifford, J., Jajodia, S., Segev, A.,

and Snodgrass, R. Temporal Databases: Theory,

Design and Implementation. The Benjamin Cummings

Publishing Company, Redwood City, USA, 1993.

Ramzi A. Haraty is an associate professor and the

chairman of the Division of Computer Science and

Mathematics at the Lebanese American University in

Beirut, Lebanon. He is also the Chief Financial Officer

of the Arab Computer Society. He received his B.S. and

M.S. degrees in Computer Science from Minnesota

State University - Mankato, Minnesota, and his Ph.D. in

Computer Science from North Dakota State University -

Fargo, North Dakota. His research interests include

database management systems, artificial intelligence,

and multilevel secure systems engineering. He has well

over 80 journal and conference paper publications. He is

a member of Association of Computing Machinery,

Arab Computer Society and International Society for

Computers and Their Applications.

Natalie Bekaii received her B.S. and M.S. degrees in

Computer Science at the Lebanese American University

– Beirut, Lebanon. Her research interests include

temporal databases and multilevel security.

